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Transport properties of the two-dimensional interacting anisotropic
electron gas at zero temperature
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At zero temperature we calculate the transport properties of the two-dimensional interacting electron gas in
(110) AlAs quantum wells and (110) Si metal-oxide-semiconductor field-effect transistor structures. In these
structures the effective mass is anisotropic, which gives rise to anisotropic transport properties. We use the
theoretical approach developed by Tokura [Phys. Rev. B 58, 7151 (1998)], where the conductivity tensor is
calculated using the Boltzmann equation. The density dependence of the anisotropic mobility for impurity
scattering and for interface-roughness scattering is studied. The predictive power of the theory is demonstrated
and we compare with experimental results. For (110) AlAs quantum wells with a mass ratio m,/m,=5.5 we

find mobility anisotropies in the range 1.5<u,/u, <12.
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I. INTRODUCTION

An anisotropic Fermi surface and/or an anisotropic disor-
der lead to anisotropic transport properties in semiconduc-
tors. This is well known for three-dimensional
semiconductors.! It is also known that the scattering problem
for an anisotropic effective mass and an isotropic scattering
potential can be reduced to that of an isotropic effective mass
and an anisotropic scattering potential.'

In the present paper we consider the anisotropy of trans-
port in the two-dimensional interacting electron gas resulting
from an effective-mass anisotropy. We only consider isotro-
pic disorder. Anisotropic transport in the two-dimensional
electron gases, as realized in (110) silicon metal-oxide-
semiconductor field-effect transistor (MOSFET) structures,
was reported long ago.? Recently, anisotropic transport was
found in (110) AlAs quantum well (QW).? Surprisingly, there
are only few experimental data on this topic. There exists an
early theoretical work for the anisotropic two-dimensional
electron gas as realized in silicon (110) MOSFET structures,*
however, experimental results® have not been compared with
theory. More recently, Tokura® considered anisotropic scat-
tering potentials in the isotropic two-dimensional electron
gas using the Boltzmann equation approach. There, the the-
oretical framework has been given but explicit results for the
anisotropic mobility due to an anisotropic Fermi surface
have not been presented.

In a recent letter we applied this theory to (110) AlAs
QWs and compared our numerical results for the anisotropic
transport with the experiment.®> Excellent agreement was
found by assuming that impurities are located at an interface
between the QW and an insulating barrier. From this we
concluded that the mobility anisotropy in the two-
dimensional electron gas could be used to get microscopic
insight about disorder. We stress, however, that agreement
between theory and experiment only could be obtained®
within a realistic model, where all extension effects due to
the width of the QW have been taken into account.

Transport properties of the two-dimensional electron gas
in (100) Si MOSFET (Ref. 7) structures and in (100) AlAs
QWs (Refs. 8 and 9) have been studied extensively in ex-
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periment. In the (100) plane the effective-mass tensor and the
mobility are isotropic. The relevant scattering mechanisms
are impurity scattering (IS), which is important at lower car-
rier density and interface-roughness scattering (IRS), more
important at higher electron density. For theoretical work
concerning these structures, see Ref. 7 for St MOSFET struc-
tures and Ref. 10 for AlAs QWs. From the results obtained
for these isotropic systems it is reasonable to consider these
two scattering mechanisms also as the relevant ones in an-
isotropic systems. In this paper we present our numerical
results for IS and IRS for anisotropic (110) Al1As QWs and
anisotropic (110) Si MOSFET structures. The effective-mass
anisotropy (the ratio of the effective masses along the main
symmetry axes) in (110) AlAs QWs (Ref. 3) is 5.5 while in
(110) Si MOSFET (Ref. 7) one finds 2.9. According to our
calculations, the anisotropy of the transport relaxation time
in these two systems can be comparable to that of the effec-
tive mass, demonstrating the importance of anisotropic scat-
tering effects.

The paper is organized as follows. In Sec. I we describe
the model and the theory. Results concerning the accuracy of
our calculations are given in Sec. III. The numerical results
for (110) AlIAs QWs are presented in Sec. IV. Our results for
(110) Si MOSFET structures are given in Sec. V. We discuss
our results and the approximations made in Sec. VI. Our
conclusions are given in Sec. VII.

II. MODEL AND THEORY
A. Model

In the following we consider an interacting two-
dimensional electron gas in the xy plane and we suppose that
the in-plane effective-mass tensor is diagonal with two effec-
tive masses m, and m,<m,. The value of the effective mass
m,, perpendicular to this plane is important for the IRS in the
case of QWs and for confinement effects in the case of
MOSFET structures. When considering a QW we suppose
infinite barriers at z=0 and z=w and the electron gas is lo-
cated at 0 <z<w with a wave function in z direction given
by &)(0<z<w)xsin(mz/w). The width parameter in such a
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system is the QW width w and explicit results for the mobil-
ity depend on its value. For Si MOSFET structures we use
the triangular confinement potential where the effective pen-
etration of the Fang-Howard wave function &y(z<<0)
oz exp(bz/2) into the semiconductor is given by zo=-3/b
and b is the Stern and Howard confinement parameter.” b is
determined by b=[487m.e’N*/e, h?]"? with N*=Np,,
+11Ng/32, where Ng is the electron density and Np,,; the
depletion charge density.” &, is the dielectric constant of the
semiconductor, Si in our case. In the case of MOSFET struc-
tures (or heterostructures) the width of the electron gas is
determined by b and is not an independent parameter as in
the case of QWs.

We consider two scattering processes caused by disorder:
IS and IRS. Suppose that there is a disorder due to randomly
distributed charged impurities of density N, in the xy plane at
a distance z; from the origin. For QWs z;=w/2 corresponds
to impurities located at the center of the QW and for z;=0 (or
z;=w) the impurities are located at the edge of the QW. In
MOSFET structures z;=0 corresponds to impurities located
at the interface between the semiconductor (Si, z<<0) and the
oxide (SiO,, z>0); for z;> 0 the impurities are located in the
oxide. The Fourier transform of the unscreened random po-
tential is written as {|U(§)|H=N[2me*F/(q,z))/e.q]*.
F)(q,z;) represents the impurity form factor, which also de-
pends on w if QWs are considered and it depends on b in the
case of MOSFET structures. Explicit expressions can be
found in Ref. 7 for MOSFET structures and in Ref. 11 for
QWs. We mention that in the long-wavelength limit one gets
Fi(g=0,z;)=1. g is the dielectric constant of the back-
ground material.

We also consider IRS, which is described by A, the aver-
age height of the interface roughness in the z direction and
by A, the correlation length parameter of the interface rough-
ness in the xy plane. For QWs (Ref. 12) we use (|U(§)[*)
=21 A%A? exp(—¢*A%/4)/ (wom?). In thin QWs this scatter-
ing mechanism becomes dominant and the mobility u in-
creases according to uow®. Note that a smaller value of m,
increases the IRS. For Si MOSFET structures we use the
expression”!3

(U@ = 4me* A2 A2 (Ng + 2NDepZ)zexp(— q2A2/4)/£%.

Because of (|U(§)|*)=N;s IRS becomes dominant at high
electron density: with increasing Ng the electron gas is
pushed toward the interface and IRS increases.

Coulomb interaction effects are treated within the
random-phase approximation which leads to conventional
screening of the random potential by a g-dependent dielectric
function &(§)=1+qsFc(q)/q.” qs=2g,/ay is the screening
wave number given by the valley degeneracy g, and the
effective Bohr radius ap=age;m,/mp, defined by the
density-of-states mass mD=°\e“'mxmy and the Bohr radius of the
hydrogen atom az=0.529 A. F(g) represents the form fac-
tor for the Fourier-transformed Coulomb interaction potential
V(§)=2me*F(q)/e.q in the two-dimensional electron gas.
Explicit expressions of F(q) for MOSFET structures can be
found in Ref. 7 and for QWs in Ref. 11. F(g) depends for
QWs on w and for MOSFET structures on b. In the long-
wavelength limit, again, one finds F(¢g—0)=1
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FIG. 1. Illustration of the Herring-Vogt-type transformation of

an elliptic Fermi surface (k) to a spherical Fermi surface (l?)

B. Theoretical framework

The theoretical approach developed in Ref. 5 is a trans-
port theory for electrons in two dimensions with an isotropic
mass in the presence of anisotropic scattering potentials. In
the present paper we consider a screened random potential
which is isotropic, however, the kinetic energy of the elec-
trons is anisotropic owing to the anisotropic mass. With a
Herring-Vogt-type! transformatlcz)n one can transform the an-

2
isotropic kinetic energy E(k)= 2,: + znf of a partlcle into an
isotropic form E(k) Ed(k/kE)? +(ky/ kF )]= Esz where we
introduced'* the dimensionless vector k k;/ k for i=x,y
2 F? 2 F?

with kF defined by Ep=-_ s 2:; , see Fig. 1.

Initially, the screened random potentlal in Fourier space is
isotropic and depends only on g¢=|g|=|k—k’|. With the
Herring-Vogt-type transformation this variable is trans-

formed to cf:|c7|=|l€—l?’|. The wave number ¢ is given in
terms of § by g=Gq\1+a cos(2¢). i is the angle between §
and the x axis, see Fig. 1. The parameter « describes the

anisotropy of the mass tensor and is given by a="= e * and

gr=\7mNg(m+m,)/(g,mp) is a wave number. We note that
for m,=m, the anisotropy parameter vanishes, =0, and the
transformed screened random potential is isotropic ¢=ggqy
with gp=ky and ky=(2mNg/g,)"? is Fermi wave number of
the isotropic electron gas. For m, # m, the screened random
potential becomes anisotropic in the transformed coordinates
due to the ¢ dependence of g. We conclude that after the
Herring-Vogt-type transformation we are left with a Hamil-
tonian with an isotropic kinetic energy and with an aniso-
tropic screened random potential. After this transformation
we can apply the theoretical framework of Ref. 5 to calculate
the two (elastic) scattering times 7, and 7, of the anisotropic
transport.

The theoretical approach,” which we use for our calcula-
tions, is described as follows. A relaxation-time vector is
used to express the nonequilibrium part of the distribution
function, which enters the Boltzmann equation.'” The input
function in this approach is the screened random potential as
the scattering function Q(q)=Q(q, %) ={|U(F, ¥)|*)/ (g, p)*.
The unscreened scattering function is calculated in Born ap-
proximation, which corresponds to the random potential in-
troduced earlier, however, expressed with the new variables
to assure an isotropic kinetic energy.

It was shown that the corresponding conductivity tensor is
diagonal (o,,=0y,=0) by assuming two symmetry axes of
the scattering function. Then Q(7,#) is developed in a
Fourier series given by Q(7,¥)=2, _ OQm(CY)cos(Zmz//) with
the inversion expressed as Q,,(7)= ey 5 ” I %”dlﬁQ(q )
Xcos(2my). Here we use 6,,,=0 for nim and §,,,=1 for
n=m.
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FIG. 2. Impurity scattering in an (110) AlAs quantum well of width w=200 A with N;=1Xx10'" cm™2 and z;=0. (a) Scattering
probability Q,,(q) for m=0,1,2,3 versus dimensionless wave number g for Ng=1X10'2 cm™. (b) Mobility ratio u,/u, versus electron
density Ng. For the solid line Qy(g) is taken into account. For the dashed line Qy(g) and Q,(g) are taken into account. For the dotted line
00(), 01(g), and Q,(g) are taken into account and for the dashed-dotted line all Q,,(g) with m=0-3 are taken into account.

The two integral equations for the two scattering times
obtained from the Boltzmann equation are solved by Fourier
expansion. The two solutions are written in terms of two
infinite symmetric matrices K7, and Kj,, which are given as
functions of the matrix J,,=/ (z)”den(q{)[cos(né’)
—cos(m{)] with g =2k sin|{/2|, where { is a scattering
angle in the transformed momentum space. We note that in
order to calculate J,,, two integrations dyd{ over Q(q;, )
have to be performed. With  K})=(-1)""[(1
+ 0 jicnl nrict F Jnsi-1 Ji—n]/2 (the — sign is for K7, and the
+ sign for Kj,) one can calculate the scattering times 7,
=(K")il1 and Ty=(K~V)]_’1] via a matrix inversion. The corre-
sponding mobilities and conductivities, respectively, are
given by the scattering times via w;=e7;/m; and o;;=Ngeu;
for i=x,y.

00(g) describes isotropic scattering while Q,(g) is the
most important term of the anisotropic contributions to the
scattering function. For isotropic masses one finds Qy(g)
>0 while Q,,(g)=0 for m=1,2,.... In this case the two scat-
tering times 7, and 7, are identical and are given by the
known expression for an isotropic system, which is deter-
mined by Qy(g). Details are discussed in Sec. III B.

C. Material parameters

In the following we choose the x and y coordinates axes
along the two symmetry axes in the (110) AlAs or (110) Si
plane and the z axis along the [110] confinement direction. In
these coordinates the in-plane effective-mass tensor of the
two-dimensional electron gas becomes diagonal with two ef-
fective masses m,=m; and m,=m, with m;>m,.

The material parameters used for (110) AlAs are as fol-
lows. The effective-mass tensor of the electron gas in the xy
plane is given by m,=1.1m, and m,=0.2m,, where m, is the
free-electron mass.® The IRS is determined by m,=0.2m, and
the electron gas has a valley degeneracy g,=1. Due to the

small mass m, IRS is very important in (110) AlAs QWs.
The dielectric constant is £,=10.16.16

For the (110) Si surface we use for the effective masses
m,=0.553m, and my:0.19me.7 The confinement parameter b
is determined by m_,=0.315m,. In theory the valley degen-
eracy for the (110) Si surface is g,=4. But g,=2 (Refs. 17
and 18) and g,=4 (Refs. 19 and 20) have been found in
experiment. We perform calculations for both values. We use
for the depletion charge density Np,,=1X 10" cm™. For
the dielectric constant of the semiconductor (Si) we apply
g,,=11.5 and for the insulator (SiO,) we use &,,,=3.9. The
dielectric constant of the background is given by &;=(g,,
+&4,5)/2=T1.17.

III. GENERAL RESULTS

In this section we illustrate the accuracy of our calcula-
tions and discuss some general properties of the scattering
function Q(q).

A. Numerical

In order to perform numerical calculations the infinite
symmetric matrices K, and Kj,, which determine the scat-
tering times, must be truncated to a finite size. The infinite
expansion of Q(7, ) must be truncated, too. The numerical
results shown in this paper have been calculated with 5X35
matrices for Kf/,;v (I,n=1,2,...,5) with four elements for
0,(@) (m=0,1,2,3).

In Fig. 2(a) we show the Fourier elements Q,,(7) (m
=0,1,2,3) for IS versus g for an AlAs QW with the largest
width used (w=200 A) and for Ny=1X 10" cm2. Here,
the impurities are located at the edge of the QW. With in-
creasing m the contributions Q,,(g) become small compared
to Qy(g) and the term Q5(g) is already very small. We have
studied the effect of the different contributions Q,,(g) to the
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mobility anisotropy. This is shown in Fig. 2(b) where we
plotted w,/p, versus electron density Ng for this QW. The
solid line is calculated with Q(g) and the mobility ratio is
given by the mass ratio, which means that the scattering time
is isotropic. The dashed line in Fig. 2(b) is calculated with
0o(q) and Q,(g). This is the lowest-order approximation giv-
ing rise to anisotropy of the scattering time. We find that with
increasing Ng the mobility ratio is strongly reduced, i.e., the
scattering time is strongly anisotropic (7,/7,<<1) and this
anisotropy increases with increasing density. The dotted line
in Fig. 2(b) is calculated using Qy(7), 0,(g), and Q,(7). At
low density the dotted and dashed lines are practically coin-
cident, though differences up to 15% between the two lines
arise with increasing the density toward Ng=10'> cm™. This
means that attaining just two terms in Q,,(¢) is enough in the
density range Ng<<3 X 10'" cm™. Note that the smaller the
QW width the larger is the validity range of this approxima-
tion. Finally, for the dashed-dotted line all Q,,(g) with m
=0-3 are used. The differences between the dashed-dotted
and dotted lines are negligible in the entire density range [see
the enlarged scale in the inset of Fig. 2(b)]. This demon-
strates that the numerical calculations are sufficiently accu-
rate for the parameter space used in the present paper.

B. Small anisotropy

Now, we discuss in more detail the approximation
07, ¥)=00(q)+Q1(g)cos(2¢). In this case the matrices K7,
and Kj, contain many zeros and the matrix inversion, in
order to determine the scattering time, is simplified. Using
for an isotropic factor the approximation I';(1)=0 one finds
for the scattering times the simple expressions 1/7,=J,
—Jl o/2 and 1/7,=Jy +J;, 0/2.> Two matrix elements Joa
—foﬁdeo(Qg)(l cos ¢) and Jio= fowde (6]4“)(1 cos ¢) de-
termine the anisotropic scattering times. The approximation
is valid for small anisotropy of the scattering times because
only the lowest anisotropic contribution Q;(g) has been
taken into account. According to Fig. 2(b), see the dashed
line, the validity range of small anisotropy for impurity scat-
tering is the low Ny range. For J; y<Jy; one finds w,/u,
=m,(1-J,0/Jo,1)/m,<1, which shows for small anisotropy
the deviations from the mass ratio.

For an isotropic mass tensor one finds Q(7)=0=/J; 5 and
the scattering times are given by 1/7,.=1/7,=J),

77dg’Q(qZ)(l cos {), where we used that for an 1sotrop1c
mass tensor Q(g)=Q(g). This is the well-known formula for
isotropic transport.’

C. Scattering function Q(q)

In the following we discuss the realizations of the scatter-
ing function Q(g). First of all we consider an electron gas
without screening effects. For a short-range disorder and
without screening the random potential does not depend on ¢
and is not modified by a Herring-Voigt-type transformation.
Therefore Q(7, ) =0(3)=0,(g) does not depend on # (i.e.,
it is isotropic) and consequently one finds 7,=7,. Corre-
spondingly, the mobility ratio is given by the mass ratio
My/ pe=m,/m,, independent of Ng. We conclude that all de-
viations of u,/u, from the mass ratio are due to interaction
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effects (screening) and/or a long-range random potential.
This is an important result.

For IS the scattering function is expressed by Q(gq)
<N, F/(q,z)*/[F(q)+q/qs]* and for small wave number
given by Q(g— 0) = N,(1+aq), where in the general case a is
negative (but not always) and depends on the position of
impurities, the well width, and g5. We conclude that for very
small wave number the screened random potential for IS
behaves like a short-range random potential without screen-
ing.

For the isotropic two-dimensional electron gas it is well
known that the inverse scattering time 1/ 7 is determined by
a g integral over the screened random potential, where the
most important contributions are due to backscattering,
which means for g=2kp.” This argument also allows to un-
derstand quantitatively the situation for the anisotropic case,
where k> k[ m,/. Since 1/ 7, Q(2k}) < Q(2k}) < 1/ 7, for
a<0we conclude that 7,/ 7, <1if IS is considered. For very
small Ng the correspondmg k and kF are such small that the
screened random potential is nearly constant and one ap-
proaches 7,/ 7,— 1. This limit has been studied before'* and
appears to have a very small validity range, see Fig. 2(b).

The origin of the deviations from w,/wu,=m,/m, is the g
dependence of the screened random potential, generated by
screening effects and the two form factors due to the finite
width and the position of impurities. For an ideal two-
dimensional electron gas of zero width with F-(¢)=1 and
Fi(q)=exp(—|z/lq) on gets Q(q) =N, exp(=2|z/|q)/ (1+q/q5)*
and the scattering function decays strongly with increasing q.
This ¢ dependence of Q(g) is stronger if width effects are
taken into account and even stronger if impurities are located
at the edge or outside the QW.® For IS the mobility aniso-
tropy decreases with increasing density, see Fig. 2(b). This
implies that the scattering times anisotropy increases with
increasing density and 7,<<7,. Numerical results of w,/u,
for IS will be discussed later in Secs. IV and V.

For IRS the scattering function is given by Q(gq)
o g*A%A? exp(—¢*A%/4)/[F(q)+q/ qs]* and for small wave
number one gets Q(q—0)xg?A*A%. Because of 1/7,
« Q(ky)> Q(ky) =1/ 7, we conclude that 7,/7,>1 for IRS.
The strong increase in Q(g) with wave number is the reason
why we find numerically w,/u,>m,/m, with 7,> 7, for low
Ny in the case of IRS. This means that even for low density
the scattering times are strongly anisotropic in the case of
IRS, quite different from IS. In the case of IRS Q(g) shows
a maximum near ¢~ 1/2A and for larger g values the scat-
tering function Q(q) decays rapidly. Therefore, one expects
that for very large density Ny>N)=g,/(327A?) one again
finds ./ p,<m,/m,.

Numerically, see later we shall find w,/u,~2m,/m, for
low density Ng<<N, which means 7,~27,. The unscreened
IRS potential is short range for small wave number. We con-
clude that the anisotropy of the scattering times 7,~27, is a
consequence of the Coulomb interaction. Numerical results
for IRS will be discussed later in Secs. IV and V.

IV. (110) ALUMINUM-ARSENIT QUANTUM WELLS

Calculation of absolute values of the mobility requires a
knowledge of the disorder potential. The experimental value
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FIG. 3. (a) Mobility s, and (b) mobility ratio w,/u, versus
electron density Ng for (110) AlAs QWs for IS with impurities
located at the edge of the QW for different well width w=50 A
(solid line), w=100 A (dashed line), w=150 A (dotted line), and
w=200 A (dashed-dotted line). The arrow represents the mass
ratio.

for the mobility in the (110) AlAs QW was u,~3
X 10* cm?/V's for Ng=1.65x10"" cm™2 (for w=150 A
with wu,/ u,=2.8).3 At such a low density in a relatively wide
quantum well the mobility is likely to be limited by the IS.
This allows us to choose the impurity concentration of
N;~1x%10'" cm™2 in our figures for AlAs QWs. For the
IRS experimental results are not available in the literature
and we use reasonable values of the parameters A=3 A and
A=30 A.

We have recently published some numerical results for
the mobility ratio u,/u, of (110) AlAs QWs for impurities
located at the center and at the edge of the (110) AlAs QW.6
There it was shown that perfect agreement with experiment’
can be found if impurities are located at the edge of the QW.
We stress that agreement with experiment was found only by
taking into account the Coulomb interaction with all form
factors due to the finite width.® In the following we present
additional results for IS and IRS.

The mobility w, and the mobility ratio u,/u, for IS and
impurities at the QW edge versus density Ny are shown in
Fig. 3. With increasing Ng the mobility increases, due to
screening. The increase in the mobility with w is owing to
the increase in the distance between the impurity layer at z;
=0 and the center of the electron gas at z=w/2. Note that the
value of the mobility is inversely proportional to the impurity
density so that Fig. 3(a) can be used to determine N, from an
experimental value w,. The ratio u,/u, decreases with Ng
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FIG. 4. Mobility ratio u,/u, versus NgXS,,, where Ny is the
electron density and S,, a dimensionless scaling factor, for (110)
AlAs QWs for IS with impurities located at the edge of the QW.
Different symbols represent different well width. In the inset we
show §,, versus w2 for QWs of width 40 A<w<250 A.

and increasing w, due to screening and the form factors F;
and Fc. We repeat that the decrease in u,/u, below the
m,/m, value means that the anisotropy in the scattering times
increases. Only for w,/u,=m,/m, the scattering time is iso-
tropic 7,=17,. » '

Interestingly, we empirically find that results of u,/ u, for
different w collapse onto a single curve provided the density
axis is scaled properly with a scaling factor S,,. This scaling
is shown in Fig. 4 for a set of QW widths and IS with
impurities at the edge of the QW. We note that the scaling is
exact at low densities and large well width, where g <<gg and
kf ,k;v >1/w. In this case the scattering function depends
only on the form factors F and F;, which are functions of
the product gw. Hence, as kf ,k§ NV 2, a scaling law with
S,,«w? is expected. In our case the scaling factor S,, is nearly
proportional to w¥? as shown in the inset of Fig. 4. This
behavior is intermediate between the quadratic behavior at
low Ny and large w and the opposite case of high Ng and
small w— 0, where the scaling factor is width independent.

The mobility w, and the mobility ratio wu,/u, for IRS
versus Ng are shown in Fig. 5. u, decreases with increasing
Ny, reaches a minimum at Ng=~Ng=g,/(2mA?) and in-
creases again (not shown) owing to a reduction in the ran-
dom potential by the factor exp(—k" 2A2). Similar results have
been found for the isotropic QW.!! Note that the mobility
ratio is strongly enhanced w,/u,~12>m,/m,=5.5 for Ng
<2X 10" em™. This enhancement has its origin in the ¢
dependence of the scattering probability, which increases
with wave number as Q(g— 0) %4 in the case of IRS. This
increase is a screening effect. At higher density, where the
screened random potential is strongly reduced by the expo-
nential factor, the ratio w,/u, decreases. Still, even for high
Ng=~10"> cm™2 the mobility ratio remains larger than the
mass ratio, see Fig. 5(b). Note, see Fig. 5(a), that the mobil-
ity u, % u,ocw® increases strongly with increasing w so that
IRS in (110) AlAs QWs is only relevant in high mobility
samples (with low N;) with small well width. The IRS might
become more relevant in future, when cleaner samples are
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FIG. 5. (a) Mobility w, and (b) mobility ratio w,/um, versus
electron density Ng for (110) AlAs QWs for IRS for different well
width w=50 A (solid line), w=75 A (dashed line), w=100 A
(dotted line), and w=125 A (dashed-dotted line).

available and the numbers for N; become smaller.

Comparing Fig. 3 with Fig. 5 we conclude that mobility
ratios can give information about the disorder present in a
sample. The analysis of experimental results is easy if only
one scattering mechanism is present. Of course, in a real
sample always both scattering mechanisms, IS and IRS, are
present and the interpretation is more involved.

As an example for a crossover behavior between IS and
IRS we show in Fig. 6 the mobility and the mobility ratio
versus Ny if both scattering mechanisms are present. While at
low carrier density IS is dominant, see the dashed thin line in
Fig. 6(b) and at high-density IRS is dominant, see the other
dashed thin line. Between 10" cm2<Ng<10"? cm™ a
crossover from IS to IRS occurs. Of course, if experiments
are made in this crossover regime the interpretations of ex-
perimental results is only possible when a detailed compari-
son with theory is made. For w,/u, the crossover occurs at
relatively large Ng and therefore the large u,/u,~12, ex-
pected for IRS in the low Ny range, is not observed in Fig. 6.
For future samples with much lower impurity density this
would change dramatically, as the crossover regime shifts to
lower density.

Finally, we stress that the results shown in this paper for
(110) AlAs should qualitatively apply to (110) AIP QWs. We
mention that the isotropic electron gas on the (100) AIP sur-
face has been studied recently.?' The effective-mass ratio in
(110) AIP system is m,/m,~3. Our calculations should also
be of relevance for (110) Si;_,Ge, QWs. Very high mobility
values for (100) Si QWs have been reported recently.?> De-

PHYSICAL REVIEW B 81, 085309 (2010)

10 L T |||||||| T |||||||| ]
(110) AlAs 80A

I 7, ]

yr (cmz/Vs)

12 T T T T

ST rrorr

(bl) 111 IIIII\\\‘\\P]‘? 11 IIIII
10" 10" 10"
2
Ny (em)

FIG. 6. (110) AlAs quantum well with IS (N,=1X10'® cm™
and z;=0) and IRS (A=3 A and A=30° A). (a) Mobility u, and Hy
versus electron density Ng for w=80 A. (b) Mobility ratio u,/u,
versus Ny for different well width w=60 A (dashed line), w
=80 A (solid line), and w=100 A (dashed-dotted line). The dashed
thin lines describe a single-scattering mechanism (IS or IRS) for
w=80 A. The arrow represents the mass ratio.

tailed calculations will be made when experimental results
on the band structure (valley degeneracy) and transport data
are available for the anisotropic case (110).

V. (110) SILICON MOSFET STRUCTURES

Experimental values for the mobility in Si(110) MOSFET
structures are in the range of u,~ 10° cm?/V 5.2 This forces
us to use a high density of impurities N;=1X 10> cm™2 in
the calculations. We assume that the impurities are located at
the Si/SiO, interface, i.e., z;=0. Note that in typical high
mobility samples of (100) MOSFET structures the impurity
density is much lower: N;~1X10'"" cm™. It is not clear
why the number of impurities in (110) Si MOSFET struc-
tures is so high.>!"29 For the IRS parameters we use the
same values as for AlAs: A=3 A and A=30 A.

The mobility u, and the mobility ratio w,/u, for IS and
impurities at the interface versus Ng are shown in Fig. 7 for
two values of the valley degeneracy. Thanks to screening
effects the mobility for g,=4 is, at low Ny, a factor 4 larger
than for g,=2. With increasing density the mobility in-
creases, due to screening. The ratio u,/u, decreases with
increasing density due to screening and the form factors F;
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FIG. 7. (a) Mobility u, and (b) mobility ratio u,/u, versus
electron density Ny for (110) Si MOSFET structures for IS with
impurities located at the interface z;=0 and for valley degeneracy
g,=2 (dashed line) and g,=4 (solid line). The arrow represents the
mass ratio.

and F¢, as typical for IS. We repeat that this decrease in
My/ p, means that the anisotropy in the scattering times in-
creases and for IS one has again 7,.> 7. For finite density,
say Ng=3X10"" cm™, there exists a significant difference
of w,/ p, for g,=2 and 4. We suggest that this could be used
to get more information about the valley degeneracy in (110)
MOSEFET structures.

The mobility u, and the mobility ratio w,/u, for IRS
versus density Ng are shown in Fig. 8 for different valley
degeneracy. w, strongly decreases with increasing Ng be-
cause the electron gas is pushed toward the interface so that
0(q) OCN§. Similar results have been found for isotropic
(100) MOSFET structures.” Note that the mobility ratio is
strongly enhanced compared to the mass ratio, u,/pm,~5.5
>m,/m,=2.9, nearly by a factor 2 for not too high Ny. This
enhancement is quite similar to what was found for AlAs
QWs. At higher density the ratio u,/ ., decreases because of
O(q) = exp(-kpA2).

The crossover behavior between IS and IRS is shown in
Fig. 9, where the mobility and the mobility ratio versus den-
sity are shown when both scattering mechanisms are present.
A characteristic peak mobility is found, similar to (100) Si
MOSFET structures.” For Ng<10'> c¢cm™ the mobility ratio
is dominated by IS, see the dashed thin line in Fig. 9(b).
Only for high Ny IRS becomes important.

An experimental result for Ng=3.15X10'2 cm™? from
Ref. 2 is shown as a solid dot with w,/ .= 1.83.23 The com-
parison between theory and experiment for w,/pm, shown in
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FIG. 8. (a) Mobility u, and (b) mobility ratio wu,/u, versus
electron density Ng for (110) Si MOSFET structure for IRS for
valley degeneracy g,=2 (dashed line) and g,=4 (solid line). The
arrow represents the mass ratio.

Fig. 9(b) is encouraging. We do not perform the best fit to
this single experimental point because the number of param-
eters in the theory is too big to make such a fit reliable.
Instead, we demonstrate that the theory has enough freedom
to improve the agreement with experiment. It has been
shown for QWs that placing the impurities away from the
center of the electron gas, for instance at the edge, can con-
siderably reduce the mobility ratio.®

In Fig. 10 we have shown for IS the ratio u,/u, versus
impurity position z; for impurities located in the SiO,. The
electron density used Ng=3.15X10'2 cm™2 corresponds to
the experimental value of Ref. 2. With increasing z; the ratio
y/ i, is substantially reduced and can reach values as low
as u,/m,=1.2, much lower than the experimental value
My ! .~ 1.83.2 Hence, the experimental value seen in Ref. 2
might be explained by impurities located in the oxide. We
hope that more systematic studies are performed for (110) Si
MOSFET structures in order to test our predictions.

Our results for (110) Si MOSFET structures should also
be applicable to Si;_,Ge, heterostructures,>*?> where z; is the
spacer distance for remote doping. The only difference be-
tween MOSFET structures and heterostructures is the dielec-
tric constant, which is higher in the latter case g;~12.5.
Numerically, we find that the mobility ratio is not very sen-
sitive to the dielectric constant. Therefore experiments with
(110) Si heterostructures could test the predictions of Fig. 10,
at least qualitatively.
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FIG. 9. (110) Si MOSFET structures with IS (N;=1

%X 10" ¢cm™2 and z;=0) and IRS (A=3 A and A=30 A) for g,
=2. (a) Mobility u, and u, versus electron density Ng. The solid
dots are experimental results of Ref. 2. (b) Mobility ratio w,/u,
versus Ng for IS and IRS as the solid line. The dashed thin lines
represent a single-scattering mechanism (IS or IRS). The solid dot
represents the experimental result of Ref. 2. The arrow represents
the mass ratio.

VI. DISCUSSION

From our numerical results we conclude that the mobility
ratio is sensitive to the origin of disorder. We conclude that if
My/ e >my/my the dominant scattering mechanism is IRS.
For u,/ . <m./m, the dominant scattering is expected to be
IS, if the density is not too high. Impurity scattering is sen-
sitive to the position of impurities, as one can see in Fig. 10
for MOSFET structures (for QWs see Ref. 6). We propose
that measurements of the mobility anisotropy can be used to
get insight into the disorder present in real samples. This is
very interesting for samples growers. We hope that our work
initiates a more systematic experimental research on the an-
isotropic mobility in two-dimensional systems, especially be-
cause comparison with theoretical predictions now is pos-
sible.

In the following we discuss assumptions and approxima-
tions used. The calculations are done in lowest order of the
disorder and multiple-scattering effects are neglected. In gen-
eral one can say that multiple-scattering effects become im-
portant for low mobility.”® Because of the high mobility in
the (110) AlAs QW used in Ref. 3 we expect that multiple-
scattering effects are not important for that sample. However,
such effects can already be important for the (110) Si MOS-
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FIG. 10. Mobility ratio s,/ u, for (110) Si MOSFET structures
versus impurity position z; for impurities located in SiO, for differ-
ent valley degeneracy. The electron density is Ng=3.15
X 10'2 ¢m™2, as in the experiment of Ref. 2. The arrow represents
the mass ratio.

FET structure studied in Ref. 2. We hope that systematic
studies of samples with lower mobility (higher disorder) and
near the metal-insulator transition could give valuable infor-
mation about multiple-scattering effects. In addition many-
body effects due to exchange and correlations, which can be
described by a local-field correction,”’ have been neglected
in our calculations because expressions for anisotropic sys-
tems are not available in the literature. Many-body effects
are expected to be more important for low electron density. It
is not excluded that for the mobility ratio these corrections
partly cancel out. Only systematic studies of the anisotropic
mobility versus density of high mobility samples can help to
get experimental information about this effect.

We stress that in the present paper we have studied only
isotropic scattering potentials. The anisotropy comes in from
the anisotropic effective mass via the Vogt-Herring-type
transformation and the fact that we take into account the
electron-electron interaction, which makes the screened ran-
dom potential strongly g dependent. In calculations, where
the Coulomb interaction effects are neglected, one needs to
introduce unphysical anisotropic scattering potentials in or-
der to explain w,/u, # mx/my.28 In comparing experimental
results>? with theory we have supposed that anisotropic scat-
tering potentials are not present. It is, however, known that
anisotropic scattering potentials exist, for instance in GaAs,
for a discussion see Ref. 5. Such potentials also contribute to
anisotropic transport.

Concerning real samples we stress that the impurity dis-
tribution in samples used in experiments often is not really
known. Systematic measurements and comparison with
theory is needed and will help to get more information on the
position of impurities. We hope that our calculations moti-
vate experimenters to do such experiments. Finally, we men-
tion that transport measurement of the isotropic two-
dimensional electron gas have been used for decades in order
to get information about disorder and/or new ground states.
The field of transport properties of the anisotropic two-
dimensional electron gas is (i) completely open from an ex-
perimental point of view and (ii) provides additional predic-
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tive power from a theoretical point of view, due to the two
mobilities w, and u,.

Another topic could be an effective mass depending on
the electron density, as found in (100) Si MOSFET
structures.?® It could be interesting to see whether a similar
effect exists in an anisotropic electron gas.

VII. CONCLUSIONS

We calculated the anisotropic conductivity in (110) AlAs
quantum wells and (110) Si MOSFET structures at zero tem-
perature and to the lowest order in the disorder. Detailed

PHYSICAL REVIEW B 81, 085309 (2010)

predictions have been made for impurity scattering,
interface-roughness scattering, and for both scattering
mechanisms coexisting. Strong anisotropic mobilities and
anisotropic scattering times are found. For a mass ratio
m/m,=2.9 in (110) Si MOSFET structures we find mobility
anisotropies in the range 1.2< My/ <6, corresponding to
1/2 <7,/ 7,<2. Our predictions can be tested in experiment.
Measurements of the anisotropic conductivity can be used to
get information about the disorder and the Coulomb interac-
tion in real samples. The calculations also apply qualitatively
to (110) AIP quantum wells, (110) Si;_,Ge, quantum wells,
and (110) Si;_,Ge, heterostructures.
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